Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

1,3-Dimethyl-2-oxo-4,6-diphenyl-1,2,3,4-tetrahydropyridine-3-carbonitrile

Urmila H. Patel, ${ }^{\text {a }}{ }^{\text {* }}$ Chaitanya G. Dave, ${ }^{\text {b }}$ Mukesh M. Jotani ${ }^{\mathrm{C}}+$ and Hetal C. Shah ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics, Sardar Patel University, Vallabh Vidya Nagar, Gujarat 388 120, India, ${ }^{\text {b }}$ Organic Syntheses Laboratory, MG Science Institute, Navrangpura, Ahmedabad, Gujarat 380 009, India, and ${ }^{\text {c }}{ }^{\text {BVB's RA College of Science, Ahmedabd, }}$ Gujarat 380 001, India
Correspondence e-mail: uhp@spu.ernet.in

Received 10 September 2001
Accepted 2 January 2002
Online 28 February 2002

The crystal structure of the title compound, $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$, reveals a distorted half-chair conformation of the central tetrahydropyridine (THP) ring, with the cyano- and adjacent phenyl-substituted C atoms displaced by 0.329 (1) and -0.315 (1) \AA, respectively, from the THP best plane. Steric interactions force the phenyl rings out of the THP plane by 49.21 (9) and $65.76(5)^{\circ}$. The cyano moiety is coplanar with the THP plane.

Comment

In order to study the influence of substituents of different sizes upon the structural parameters of the molecule, we report here the crystal structure of 1,3-dimethyl-2-oxo-4,6-diphenyl-1,2,3,4-tetrahydropyridine-3-carbonitrile, (I). The crystal structures of the analogous diethyl and dibenzyl derivatives of tetrahydropyridine have been reported previously (Patel et al., 2001, 2002).

(I)

Fig. 1 depicts the structure of the molecule of (I), and selected bond lengths and angles are given in Table 1. The structure of (I) has the same characteristic molecular dimensions as are observed for similar compounds of this class (Patel

[^0]

Figure 1
A view of the molecular structure of (I) showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
et al., 2001, 2002). The bonds $\mathrm{C} 1-\mathrm{C} 2, \mathrm{C} 2-\mathrm{C} 3$ and $\mathrm{C} 3-\mathrm{C} 4$ [1.548 (2), 1.554 (2) and 1.494 (2) \AA, respectively] have predominantly single-bond character, whereas the $\mathrm{C} 1-\mathrm{N} 1$ distance of 1.361 (2) A suggests a partial double bond. The lengthening of $\mathrm{C} 2-\mathrm{C} 3$ and $\mathrm{C} 3-\mathrm{C} 4$, and the contraction of the $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ angle $\left[107.9(1)^{\circ}\right.$], may be attributed to the comparatively heavy substituent at C3 (a phenyl ring). These values are similar to those found in the other derivatives of THP that we have reported recently (Patel et al., 2001, 2002).

The triple-bond character of $\mathrm{C} 18-\mathrm{N} 2[1.135$ (3) \AA], and the $\mathrm{C} 2-\mathrm{C} 18-\mathrm{N} 2$ angle of $177.8(2)^{\circ}$ defining the linearity of the cyano moiety, are typical of this group of 3-cyano-2-pyridine compounds (Black et al., 1992; Hussain et al., 1996).

The methyl group at C2 is out of the plane of the THP ring by 0.627 (3) \AA, whereas that at N 1 is coplanar with the THP plane. Both the phenyl rings are planar within themselves. Steric interactions force the phenyl rings out of the THP plane by 49.21 (9) and $65.76(5)^{\circ}$. However, these dihedral angles are in a much smaller range than those reported for similar compounds (Patel et al., 2001, 2002; Hursthouse et al., 1992).

The torsion angles about $\mathrm{C} 2-\mathrm{C} 18$ are as follows, with values for the diethyl and dibenzyl substituents, respectively, given inside the brackets: $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 18-\mathrm{N} 2=107(5)^{\circ}$ $\left[-126(8)\right.$ and $\left.-164(2)^{\circ}\right]$ and $\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 18-\mathrm{N} 2=-136(5)^{\circ}$ [113 (8) and $\left.74(2)^{\circ}\right]$. These observations reveal that the molecular conformation in all these compounds differs significantly about the $\mathrm{C} 2-\mathrm{C} 18$ bond.

In summary, these results show that, although the molecule of (I) preserves the same characteristic molecular dimensions as analogous compounds, the molecular conformation is influenced by the size of the substituents. As usual in heterocyclic compounds, weak van der Waals forces are responsible for the stability of the structure.

Experimental

Compound (I) was synthesized according to the method of Shah (2000). Full details of the synthesis will be published elsewhere. Thin needle-shaped crystals of (I) were grown from a chloroform-ethanol solution by slow evaporation. The crystal density was measured by flotation in an aqueous potassium iodide solution.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=302.36$
Monoclinic, $P 2_{\mathrm{a}_{1}} / c$
$a=13.738$ (3) \AA 。
$b=7.4751(16) \AA$
$c=17.1566$ (18) A
$\beta=110.117$ (13) ${ }^{\circ}$
$V=1654.4(5) \AA^{3}$
$Z=4$
$D_{x}=1.214 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: empirical via ψ scan (North et al., 1968)
$T_{\text {min }}=0.931, T_{\text {max }}=0.942$
3141 measured reflections
3141 independent reflections

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.141$
$S=1.06$
3010 reflections
220 parameters
H-atom parameters constrained
$D_{m}=1.204 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=25-35^{\circ}$
$\mu=0.60 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, colourless
$0.2 \times 0.1 \times 0.1 \mathrm{~mm}$

2548 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=68^{\circ}$
$h=0 \rightarrow 16$
$k=0 \rightarrow 8$
$l=-20 \rightarrow 19$
2 standard reflections frequency: 60 min intensity decay: 1%

H atoms were treated as riding, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H and $1.2 U_{\text {eq }}(\mathrm{C})$ for all others.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors are grateful to Dr Babu Varghese of RSIC, IIT Madras, India, for the X-ray data collection. They are also grateful to the Department of Physics, SPU, for financial

Table 1
Selected geometric parameters ($\AA \AA^{\circ}$).

O1-C1	$1.212(2)$	$\mathrm{C} 5-\mathrm{C} 12$	$1.482(2)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.361(2)$	$\mathrm{C} 3-\mathrm{C} 6$	$1.512(2)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.421(2)$	$\mathrm{C} 2-\mathrm{C} 18$	$1.470(3)$
$\mathrm{N} 1-\mathrm{C} 20$	$1.461(2)$	$\mathrm{C} 2-\mathrm{C} 19$	$1.522(3)$
$\mathrm{N} 2-\mathrm{C} 18$	$1.135(3)$	$\mathrm{C} 2-\mathrm{C} 1$	$1.548(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$121.87(14)$	$\mathrm{C} 18-\mathrm{C} 2-\mathrm{C} 19$	$109.14(16)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$121.28(16)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$107.49(13)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$107.90(13)$	$\mathrm{N} 2-\mathrm{C} 18-\mathrm{C} 2$	$177.8(2)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{O} 1$	$-174.80(19)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 12-\mathrm{C} 13$	$53.8(2)$
$\mathrm{C} 18-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$	$-102.1(2)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 6-\mathrm{C} 7$	$-82.3(2)$

support enabling them to carry out the work. MMJ thanks the UGC for a teaching fellowship award.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1177). Services for accessing these data are described at the back of the journal.

References

Black, S. N., Davey, R. J., Slawin, A. M. Z. \& Williams, D. J. (1992). Acta Cryst. C48, 323-325.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Hursthouse, M. B., Karaulov, A. I., Ciechanowicz-Rutkowska, M., Kolasa, A. \& Zankowska-Jasińska, W. (1992). Acta Cryst. C48, 1257-1260.
Hussain, Z., Fleming, F. F., Norman, R. E. \& Chang, S. (1996). Acta Cryst. C52, 1010-1012.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Patel, U. H., Dave, C. G., Jotani, M. M. \& Shah, H. C. (2001). Z. Kristallogr. New Cryst. Struct. 216, 667-669.
Patel, U. H., Dave, C. G., Jotani, M. M. \& Shah, H. C. (2002). Cryst. Res. Technol. Submitted.
Shah, H. C. (2000). PhD Thesis, Gujarat University, India.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: \dagger Current address: Department of Physics, Sardar Patel University, Vallabh Vidya Nagar, Gujarat 388 120, India.

